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What constitutes a “good” ensemble forecast?

Here, the observed is outside of the range of the ensemble,
which was sampled from the pdf shown.  Is this a sign of
a poor ensemble forecast?
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Rank 1 of 21 Rank 14 of 21

Rank 5 of 21 Rank 3 of 21
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One way of evaluating ensembles:
“rank histograms” or “Talagrand diagrams”

Happens when
observed is 
indistinguishable
from any other 
member of the
ensemble. Ensemble

is “reliable”

Happens when 
observed too 
commonly is
lower than the 
ensemble members.

Happens when
there are either
some low and some
high biases, or when
the ensemble doesn’t
spread out enough.

We need lots of samples from many situations to evaluate the characteristics of the ensemble.

ref: Hamill, MWR, March 2001
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Rank histograms of Z500, T850, T2m
(from 1998 reforecast version of NCEP GFS)

Solid lines indicate ranks after bias correction. Rank histograms are particularly
U-shaped for T2M, which is probably the most relevant of the three plotted here.
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Rank histograms for higher dimensions?
the “minimum spanning tree” histogram

• Solid lines: minimum spanning tree (MST) between 10-member forecasts
• Dashed line: MST when observed O is substituted for member D
• Calculate MST’s sum of line segments for all forecasts, and observed replacing each

forecast member.  Tally rank of pure forecast sum relative to sum where observed
replaced a member.

• Repeat for independent samples, build up a histogram

Ref: Wilks, MWR, June 2004.  See also Smith and Hansen, MWR, June 2004
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Minimum spanning tree
histogram interpretation

• Graphical interpretation of
MST is different than it is
for uni-dimensional rank
histogram, a disadvantage.

• Is there a multi-
dimensional rank
histogram with the same
geographic interpretation
as the scalar rank
histogram?

Ref: Wilks, MWR, June 2004.  See also Smith and Hansen, MWR, June 2004
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Multi-variate rank histogram

• Standardize and rotate using Mahalanobis transformation (see Wilks 2006 text).
• For each of n members of forecast and observed, define “pre-rank” as the number of

vectors to its lower left (a number between 1 and n+1)
• The multi-variate rank is the rank of the observation pre-rank, with ties resolved at

random
• Composite multi-variate ranks over many independent samples and plot rank histogram.
• Same interpretation as scalar rank histogram (e.g., U-shape = under-dispersive).

based on Tilmann Gneiting’s presentation at Probability and Statistics, 2008 AMS Annual Conf., New Orleans.

z
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“Mahalanobis”
transform
(S is forecasts’
sample
covariance)
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Multi-variate rank histogram calculation

based on Tilmann Gneiting’s presentation at Probability and Statistics, 2008 AMS Annual Conf., New Orleans

F1, F2, F3, F4, F5, O pre-ranks:  [1, 5, 3, 1, 4, 1] → sorted: obs = either rank 1, 2, or 3 with p=1/3.
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Rank histograms tell us about reliability -
but what else is important?

“Sharpness”
measures the
specificity of
the probabilistic
forecast.  Given 
two reliable forecast
systems, the one 
producing the 
sharper forecasts
is preferable.

But: don’t want
sharp if not reliable.
Implies unrealistic 
confidence.



11

“Spread-skill” relationships are
important, too.

ensemble-mean
error from a sample
of this pdf on avg.
should be low.

ensemble-mean
error should be
moderate on avg.

ensemble-mean
error should be
large on avg.

Small-spread ensemble forecasts should have less 
ensemble-mean error than large-spread forecasts.
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Spread-skill for 1990’s
NCEP GFS

At a given grid point, spread S
is assumed to be a random
variable with a lognormal
distribution

where Sm is the mean spread
and β is its standard deviation.

As β increases, there is a wider
range of spreads in the sample.
One would expect then the
possibility for a larger spread-
skill correlation.

Here β and spread-skill
correlation are shown for late
1990’s NCEP global forecast
model.

lnS ~ N lnS
m
,!( )

from Whitaker and Loughe, MWR, Dec. 1998

Corr

β
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Ensemble mean
and standard
deviation of
precipitation

• Mean colored,
standard deviation
in contours.  Notice
the strong similarity.
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Spread-skill and
precipitation forecasts

True spread-skill relationships 
harder to diagnose if forecast
PDF is non-normally distributed, 
as they are typically for 
precipitation forecasts.

Commonly, spread is no longer
independent of the mean value;
it’s larger when the amount is
larger.

Hence, you get an apparent
spread-skill relationship, but
this may reflect variations in the
mean forecast rather than
real spread-skill.

See Hamill and Colucci, MWR, 1998 for more discussion on this
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Reliability diagrams
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Reliability diagrams

Curve tells you what
the observed frequency
was each time you
forecast a given probability.
This curve ought to lie
along  y = x  line. Here this
shows the ensemble-forecast
system over-forecasts the
probability of light rain.

Ref: Wilks text, Statistical Methods in the Atmospheric Sciences
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Reliability diagrams

Inset histogram tells
you how frequently
each probability was
issued.  

Perfectly sharp: 
frequency of usage
populates only
0% and 100%.

Ref: Wilks text, Statistical Methods in the Atmospheric Sciences
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Reliability diagrams

BSS = Brier Skill Score

BSS =
BS(CLimo) ! BS(Forecast)

BS(CLimo) ! BS(Perfect)

BS(•) measures the
Brier Score, which you
can think of as the 
squared error of a 
probabilistic forecast.

Perfect: BSS = 1.0
Climatology: BSS = 0.0 

Ref: Wilks text, Statistical Methods in the Atmospheric Sciences
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Brier score
• Define an event, e.g., obs. precip > 2.5 mm.
• Let      be the forecast probability for the ith

forecast case.
• Let      be the observed probability (1 or 0).

Then

Pi
f

O
i

BS(forecast) =
1

ncases
Pi

f
!Oi( )

i=1

ncases

"
2

(So the Brier score is the averaged squared error of
the probabilistic forecast)
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Reliability after post-processing

Statistical correction
of forecasts using 
a long, stable set of
prior forecasts from
the same model 
(like in MOS). More
on this in reforecast
seminar.

Ref: Hamill et al., MWR, Nov 2006
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“Attributes diagram”
(a slight variant of the reliability diagram)

www.bom.gov.au/bmrc/wefor/staff/eee/verif/ReliabilityDiagram.gif,
from Beth Ebert’s verification web page,
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html
based on Hsu and Murphy, 1986, Int’l Journal of Forecasting

BSS = 
“Resolution” - “Reliability”

“Uncertainty”

Uncertainty term always positive, so probability
forecasts will exhibit positive skill if resolution
term is larger in absolute value than reliability
term.    Geometrically, this corresponds to points
on the attributes diagram being closer to 1:1
perfect reliability line than horizontal no-resolution
line (from Wilks text, 2006, chapter 7)

Note, however, that this geometric interpretation
of the attributes diagram is correct only if all
samples used to populate the diagram are drawn
from the same climatological distribution. If one is
mixing samples from locations with different
climatologies, this interpretation is no longer
correct! (for more on what underlies this issue,
see Hamill and Juras, Oct 2006 QJRMS)
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Proposed modifications to
reliability diagrams

• Block-bootstrap techniques (each forecast day is a block) to provide
confidence intervals.  See also Hamill, WAF, April 1999, and Bröcker and
Smith, WAF, June 2007.

• Distribution of climatological forecasts plotted as horizontal bars on the
inset histogram.  Helps explain why there is small skill for a forecast that
appears so reliable  (figure from Hamill et al., MWR, 2008 to appear).

12-h accumulated forecasts, 5-mm threshold, over US 
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Continuous ranked probability score
Start with cumulative distribution function (CDF)

Ff(x) = Pr {X ≤ x}

where X is the random variable, x is some specified threshold.
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Continuous ranked probability score

• Let           be the forecast probability CDF for the ith forecast case.
• Let           be the observed probability CDF (Heaviside function).
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CRPS forecast( ) =
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Continuous ranked probability score

• Let           be the forecast probability CDF for the ith forecast case.
• Let           be the observed probability CDF (Heaviside function).
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Continuous ranked probability
skill score (CRPSS)

CRPSS =
CRPS( forecast) ! CRPS(climo)

CRPS(perfect) ! CRPS(climo)

Like the Brier score, it’s common to convert this to
a skill score by normalizing by the skill of climatology,
or some other reference.

Ref: Wilks 2006 text



27

Relative operating
characteristic (ROC)

see Mason, 1982, Austr. Meteor. Mag, and Harvey et al., 1992 MWR for a review 

Measures tradeoff of Type I statistical errors (incorrect rejection of null hypothesis) against
Type II (incorrect acceptance of alternative) as decision threshold is changed.
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Relative operating
characteristic (ROC)

ROCSS =
AUCf ! AUCclim

AUCperf ! AUCclim

=
AUCf ! 0.5

1.0 ! 0.5
= 2AUCf !1
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Method of calculation of ROC:
parts 1 and 2
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(2) Repeat the process for other locations, dates, building
up contingency tables for sorted members.



30

Method of calculation of ROC:
part 3
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for each sorted ensemble member.
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Method of calculation of ROC:
parts 3 and 4

HR = 0.163
FAR = 0.000

HR = 0.504
FAR = 0.002

HR = 0.597
FAR = 0.007

HR = 0.697
FAR = 0.017

HR = 0.787
FAR = 0.036

HR = 0.981
FAR = 0.612

HR = [0.000, 0.163, 0.504, 0.597, 0.697, 0.787, 0.981, 1.000]

FAR = [0.000, 0.000, 0.002, 0.007, 0.017, 0.036, 0.612, 1.000]

(4) Plot hit rate
vs. false alarm
rate
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Potential economic value diagrams

These diagrams
tell you the 
potential economic
value of your
ensemble forecast
system applied to
a particular forecast
aspect.  Perfect
forecast has value
of 1.0, climatology
has value of 1.0.
Value differs with
user’s cost/loss
ratio.

Motivated by search for a metric that relates ensemble forecast
performance to things that customers will actually care about.

from Zhu et al. review article, BAMS, 2001
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Potential economic value:
calculation method

Assumes decision maker
alters actions based on 
weather forecast info.

C = Cost of protection
L = Lp+Lu = total cost of
  a loss, where …
Lp = Loss that can be 
  protected against
Lu = Loss that can’t be
  protected against.
N = No cost

h + m

= o

f + c

= 1! o
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Potential economic value, continued
Suppose we have the contingency
table of forecast outcomes, [h, m, f, c].

Then we can calculate the expected
value of the expenses from a forecast,
from climatology, from a perfect forecast.

Eforecast = f C + h C + Lu( ) + m Lp + Lu( )

Eclimate = Min o Lp + Lu( ), C + oLu!
"

#
$ = oLu + Min oLp , C!" #$

Eperfect = o C + Lu( )

V =
Eclimate % Eforecast

Eclimate % Eperfect

=
Min oLp , C!" #$ % h + f( )C % mLp

Min oLp , C!" #$ % oC

Note that
value will vary
with C, Lp, Lu;

Different users
with different 
protection costs
may experience
a different value
from the forecast
system.

h + m

= o

f + c

= 1! o



35

From ROC to
potential economic value

HR =
h

o
FAR =

f

1! o
m = o ! HRo

V =
Min o,C Lp

"# $% ! h + f( )C Lp ! m

Min o,C Lp
"# $% ! or

=
Min o,C Lp

"# $% ! C Lp( )FAR 1! o( ) + HRo 1! C Lp( ) ! o
Min o,C Lp

"# $% ! or

Value is now seen to be related to FAR and HR, the components of the
ROC curve.
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The red curve is
from the ROC
data for the member 
defining the 90th 
percentile of the 
ensemble distribution.
Green curve is for
the 10th percentile.
Overall economic
value is the maximum
(use whatever member
for decision threshold 
that provides the
best economic value).

Economic value curve example

While admirable for framing verification in terms more relevant to the forecast user,
the economic value calculations as presented here do not take into account other
factors such as risk-aversion, or more complex decisions other than protect/don’t.
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Forecast skill often overestimated!
- Suppose you have a sample of forecasts from two islands,
   and each island has different climatology.

- Weather forecasts impossible on both islands.

- Simulate “forecast” with an ensemble of draws from climatology

- Island 1: F ~ N(α,1).          Island 2: F ~ N(-α,1)

- Calculate ROCSS, BSS, ETS in normal way.  Expect no skill.

As climatology of the two islands begins 
to differ, then “skill” increases though 
samples drawn from climatology.

These scores falsely attribute differences 
in samples’ climatologies to skill of the forecast.

Samples must have the same climatological 
event frequency to avoid this.

reference: Hamill and Juras, QJRMS, Oct 2006
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Other ensemble
verification methods

• Bounding boxes (Judd et al., QJRMS, 2007; for similar
idea, see Wilson et al., MWR, June 1999)

• Evaluation of linearity of forecast (Gilmour et al, JAS,
2001).

• Perturbation vs. error correlation (Toth et al., MWR,
August 2003)

• Ignorance score (Roulston and Smith, MWR, June
2002)

• Discrimination diagram (Wilks text vol 2, 2006, p. 293)
• etc.
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Visualization of ensemble
forecast information

• Techiques primarily aimed at forecasters for
interpretation of ensembles (convey the content
of complex, high-information density data set in
way that is maximally useful to forecaster)

• Techniques for conveying probabilistic
information to the public effectively.





 Example of dense information
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Give the cognoscenti products that, once they
understand them, will BLOW THEM AWAY.

http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html 
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Spaghetti diagrams
• A selected contour is
plotted for each
member.

• Advantage: provides
a graphical
representation of
uncertainty.

• Disadvantage:
representation can be
misleading.  In
regions with weak
gradients, will be
large displacement of
a member’s line for a
small change the
forecast.

from Matsueda et al. presentation at 2nd International THORPEX symposium
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Mean and standard deviation
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Anomaly and
normalized anomaly
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Stamp maps

 

Graphically
shows each
ensemble
member:

Advantage:
get to see the
synoptic details
of each member.

Disadvantage:
With lots of 
members, small
maps, and tough
to show large
areas / multiple
fields at once.

from Tim Palmer’s
book chapter, 2006,
in “Predictability of
Weather and
Climate”.
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Stamp maps

 

Zoom
capability
with mouse
over event

from Tim Palmer’s
book chapter, 2006,
in “Predictability of
Weather and
Climate”.



Stamp Skew-T’s with mouse-over
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Probability plots

• Provides a graphical
display of
probabilities for a
particular event, here
for probability of
greater than 10 mm
rainfall in 24 h.

• Advantage: simple,
relatively intuitive.

• Disadvantages: no
sense of the
meteorology
involved, doesn’t
provide information
on whole pdf.

from Hamill & Whitaker’s analog reforecast technique web page, www.cdc.noaa.gov/reforecast/narr.
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Probability plots

• With mouse-over
event capability

from Hamill & Whitaker’s analog reforecast technique web page, www.cdc.noaa.gov/reforecast/narr.

Precipitation amount

P
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Maximum 6-hourly total
precipitation from all members



50

Joint probability of 12-hourly precip < 0.01 inches
(~ .25 mm) and RH < 30% and wind speed > 15 mph

(6.6 ms-1) and T2m > 60F (15.5 C)

here,
useful for
fire weather
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from Christine Johnson’s presentation at Nov 2007 ECMWF workshop on ensemble prediction
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from Christine Johnson’s presentation at Nov 2007 ECMWF workshop on ensemble prediction
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Use and misuse of colors

Bold colors for near 50% forecasts
provide misleading sense of
significance of small differences.

Better

from WMO/TD-1422, Guidelines on Communicating Forecast Uncertainty



54

Fan charts

from Ken Mylne (Met Office) presentation to NWS NFUSE group



EPSgrams
from
RPN

Canada
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UK Met Office
user-preferred charts for precipitation

from Ken Mylne (Met Office) presentation to NWS NFUSE group

plots quantiles of the forecast pdf plots exceedance probabilities
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U. Washington’s “Probcast”

http://probcast.washington.edu
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Meteograms
• original design by

ECMWF
• widely used by

ensemble
forecasters

• min, max, 80th, 20th
percentiles, plus
median conveyed
through “box and
whiskers”

from Ken Mylne (Met Office) presentation 
to NWS NFUSE group. 
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Wind roses –
probabilities

of speed
and direction
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Verbal descriptions of uncertainty –
the IPCC scale

The IPCC have proposed a likelihood scale for
communication of climate change predictions:

Virtually Certain > 99% probability

Very Likely > 90% probability

Likely > 66% probability

About as likely as not 33% to 66% probability

Unlikely < 33% probability

Very Unlikely < 10% probability

Exceptionally Unlikely < 1% probability

from Ken Mylne (Met Office) presentation to NWS NFUSE group
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Verbal descriptions of uncertainty –
an alternative scale

An alternative scale proposed for general use by WMO

Extremely Likely > 99% probability

Very Likely 90-99% probability

Likely 70-89% probability

Probable – more likely than not 55-69% probability

Equally likely as not 45-54% probability

Possible – less likely than not 30-44% probability

Unlikely 10-29% probability

Very Unlikely 1-9% probability

Extremely Unlikely < 1% probability

from Ken Mylne (Met Office) presentation to NWS NFUSE group
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Good resource for how to
present complex information


